Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comp Immunol Microbiol Infect Dis ; 109: 102183, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38640700

RESUMEN

Henipavirus (HNV) is well known for two zoonotic viruses in the genus, Hendra virus (HeV) and Nipah virus (NiV), which pose serious threat to human and animal health. In August 2022, a third zoonotic virus in the genus Henipavirus, Langya virus (LayV), was discovered in China. The emergence of HeV, NiV, and LayV highlights the persistent threat of HNV to human and animal health. In addition to the above three HNVs, new species within this genus are still being discovered. Although they have not yet caused a pandemic in humans or livestock, they still have the risk of spillover as a potential threat to the health of humans and animals. It's important to understand the infection and transmission of different HNV in animals for the prevention and control of current or future HNV epidemics. Therefore, this review mainly summarizes the animal origin, animal infection and transmission of HNV that have been found worldwide, and further analyzes and summarizes the rules of infection and transmission, so as to provide a reference for relevant scientific researchers. Furthermore, it can provide a direction for epidemic prevention and control, and animal surveillance to reduce the risk of the global pandemic of HNV.

2.
Sci Rep ; 14(1): 6938, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521793

RESUMEN

As the most malignant tumor, the prognosis of pancreatic cancer is not ideal even in the small number of patients who can undergo radical surgery. As a highly heterogeneous tumor, chemotherapy resistance is a major factor leading to decreased efficacy and postoperative recurrence of pancreatic cancer. In this study, nuclear magnetic resonance (NMR)-based metabolomics was applied to identify serum metabolic characteristics of pancreatic ductal adenocarcinoma (PDAC) and screen the potential biomarkers for its diagnosis. Metabolic changes of patients with different CA19-9 levels during postoperative chemotherapy were also monitored and compared to identify the differential metabolites that may affect the efficacy of chemotherapy. Finally, 19 potential serum biomarkers were screened to serve the diagnosis of PDAC, and significant metabolic differences between the two CA19-9 stratifications of PDAC were involved in energy metabolism, lipid metabolism, amino acid metabolism, and citric acid metabolism. Enrichment analysis of metabolic pathways revealed six shared pathways by PDAC and chemotherapy such as alanine, aspartate and glutamate metabolism, arginine biosynthesis, glutamine and glutamate metabolism, citrate cycle, pyruvate metabolism, and glycogolysis/gluconeogeneis. The similarity between the metabolic characteristics of PDAC and the metabolic responses to chemotherapy provided a reference for clinical prediction of benefits of postoperative chemotherapy in PDAC patients.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores de Tumor/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patología , Pronóstico , Glutamatos
3.
Front Public Health ; 12: 1333820, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435298

RESUMEN

Introduction: Emergency medical rescue plays a vital role in alleviating the harm of all kinds of emergencies to people's physical and mental health and life safety. The current emergency medical teams (EMTs) formation model is not unified. We focused on the disadvantages of the bricolage mode of China EMTs and put forward empirical-based countermeasures to improve the emergency management ability of EMTs. Methods: From March to September 2022, 23 leaders of EMTs in North China (Tianjin) were selected by objective sampling method to conduct one-to-half structured in-depth interviews. Nvivo12.0 software was used for three-level coding. The disadvantages of the bricolage model of EMT were analyzed. Results: Based on the three-level coding, 150 initial concepts, 36 sub-coding, 17 main coding, six categories, and two core categories were sorted out. Management structure, internal stability, and support are recognized as the crucial elements armed with the EMTs. Discussion: The bricolage EMTs have disadvantages such as a chaotic management structure, weak internal stability, and inadequate support. It is necessary to construct full-time EMTs that incorporate a standardized personnel admission mechanism, full-time training and exercise mechanism, diversified incentive mechanism, and multi-agent cooperation mechanism, etc.


Asunto(s)
Ejercicio Físico , Hospitalización , Humanos , Investigación Cualitativa , China , Salud Mental
4.
Plant Sci ; 342: 112027, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38354754

RESUMEN

The APETALA2 (AP2) transcription factors play crucial roles in plant growth and stage transition. Ginkgo biloba is an important medicinal plant renowned for the rich flavonoid content in its leaves. In this study, 18 GbAP2s were identified from the G. biloba genome and classified into three clusters. We found that the members of the euAP2 cluster, including four TOEs (GbTOE1a/1b/1c/3), exhibited a higher expression level in most samples compared to other members. Specifically, GbTOE1a may have a positive regulatory role in salt and drought stress responses. The overexpression of GbTOE1a in G. biloba calli resulted in a significant increase in the flavonoid content and upregulation of flavonoid biosynthesis genes, including PAL, 4CL, CHS, F3H, FLSs, F3'Hs, OMT, and DFRs. By contrast, the silencing of GbTOE1a in seedlings decreased the flavonoid content and the expression of flavonoid synthesizing genes. In addition, the silenced seedlings exhibited decreased antioxidant levels and a higher sensitivity to salt and drought treatments, suggesting a crucial role of GbTOE1a in G. biloba salt and drought tolerance. To the best of our knowledge, this was the first investigation into the identification and characterization of GbAP2s in G. biloba. Our results lay a foundation for further research on the regulatory role of the AP2 family in flavonoid synthesis and stress responses.


Asunto(s)
Sequías , Ginkgo biloba , Ginkgo biloba/genética , Resistencia a la Sequía , Estudio de Asociación del Genoma Completo , Extractos Vegetales/metabolismo , Flavonoides/metabolismo , Cloruro de Sodio/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Int Immunopharmacol ; 129: 111571, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38309095

RESUMEN

BACKGROUND: Chronic bronchitis (CB), a type of chronic obstructive pulmonary disease (COPD), poses a significant global health burden owing to its high morbidity and mortality rates. Eucalyptol, limonene and pinene enteric capsules (ELPs) are clinically used as expectorants to treat various respiratory diseases, including CB, but their acting mechanisms remain unclear. In this study, we investigated the anti-CB effects of ELP in a rat model of lipopolysaccharide (LPS)-induced CB. The molecular mechanisms underlying its inhibitory effects on airway inflammation were further explored in LPS-stimulated Beas-2B cells. METHODS: ELP was characterized using gas chromatography. The production of inflammatory mediators in bronchoalveolar lavage fluid (BALF) was determined using an enzyme-linked immunosorbent assay. The expression of MUC5AC, MUC5B, and p-p65 in the lung tissue was measured using immunohistochemical staining. The gene expression of inflammatory mediators was determined using qRT-PCR. The expression levels of the target proteins were detected by western blotting. Nuclear localization of p65 was determined using an immunofluorescence assay. RESULTS: Compared to the CB model rats, ELP-treated rats showed reduced airway resistance, inflammation, and goblet cell hyperplasia. In BALF, ELP decreased the levels of inflammatory mediators, including TNF-α, IL-6, MIP-1α, and CCL5. ELP also suppressed LPS-induced elevation of MUC5AC, MUC5B, and p-p65 in the lung tissue. The metabolic pathway changes caused by LPS challenge were improved by ELP treatment. In LPS-exposed Beas-2B cells, ELP treatment inhibited the expression of TNFA, IL6, CCL5, MCP1, and MIP2A and decreased the phospho-levels of toll-like receptor 4 (TLR4) signaling-related proteins, including p-p38, p-JNK, p-ERK, p-TBK1, p-IKKα/ß, p-IκB, p-p65, and p-c-Jun. ELP also hindered the nuclear translocation of p65, c-Jun, and IRF3. CONCLUSIONS: This study showed that ELP has a potential therapeutic effect in LPS-induced CB rat model, possibly by suppressing TLR4 signaling. These results justify the clinical use of ELP for the treatment of pulmonary inflammatory diseases.


Asunto(s)
Bronquitis Crónica , Animales , Ratas , Lipopolisacáridos , Eucaliptol/uso terapéutico , Limoneno/uso terapéutico , Receptor Toll-Like 4 , Inflamación/tratamiento farmacológico , Mediadores de Inflamación
6.
J Pharm Pharmacol ; 76(4): 416-425, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38402632

RESUMEN

OBJECTIVES: Orientation to specific cells is an important topic in active targeting strategy for nanoparticle-based drug delivery systems. While these administered nanoparticles will be sequestrated within the liver, their cellular distribution behaviors in the liver are not clear. The aim of this study was to fabricate glycyrrhizic acid (GL) modified BSA nanoparticles and evaluate their hepatic cellular distribution. METHODS: GL-modified BSA (GL-BSA) was tailored according to the periodate oxidation method, then GL-BSA nanoparticles loaded with paclitaxel (PTX@GL-BSA NPs) were prepared through self-assembly approach. In vitro cellular uptake was assessed by FITC-labeled BSA nanoparticles and immunofluorescent analysis was performed to track their relative distribution in the liver. KEY FINDINGS: The fabricated PTX@GL-BSA NPs were spherical structure with the particle size of 179 nm and a negative potential (-17.3 mV). Flow cytometry (FCM) studies exhibited that the accumulation of GL-BSA nanoparticles was 5.3-fold compared with BSA nanoparticles in HepG2 cells. The Nanoparticles were preferentially accumulated in the sinusoidal endothelial cells rather than the Kupffer cells. CONCLUSIONS: This study provides useful information to understand the distribution of hepatic targeting nanoparticles when using GL-modified BSA nanoparticles, which helps to further use for effective treatment of liver disease.


Asunto(s)
Ácido Glicirrínico , Nanopartículas , Portadores de Fármacos/química , Células Endoteliales , Albúmina Sérica Bovina/química , Hepatocitos , Nanopartículas/química , Tamaño de la Partícula
7.
Heliyon ; 9(11): e21635, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027703

RESUMEN

Background: Xuelian injection (XI), a classic preparation extracted from Saussureae Involucratae Herba, has been clinically used to manage rheumatoid arthritis (RA) for nearly twenty years in China. However, the underlying anti-RA mechanism of XI remains unclear. In this study, complete Freund's adjuvant (CFA)-induced acute arthritic model was used to examine the anti-RA effects of XI in vivo. The molecular mechanisms of this action were further investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: XI and XI freeze dried powder were characterized by UPLC analysis. CD68 and TLR4 expression in the ankle joints was measured by immunohistochemistry. The secretion of inflammatory mediators was detected by ELISA. The expression levels of TLR4 involved components were measured by Western blotting. The localization of transcription factors was measured by immunofluorescence assay. Results: XI treatment ameliorated arthritic symptoms induced by CFA in the ankle joints of rats. The serum levels of inflammatory mediators, including TNF-α, MCP-1, and Rantes were decreased by XI treatment. The elevation of CD68 and TLR4 levels in ankle joints caused by CFA was suppressed by XI treatment. Moreover, XI treatment inhibited the secretion of nitric oxide and prostaglandin E2 in LPS-treated RAW264.7 macrophages. The expression of their enzymes iNOS and COX-2 was also decreased after XI treatment. The production of inflammatory mediators, including TNF-α, IL-6, IL-1ß, MCP-1, MIP-1α, and Rantes was reduced by XI treatment in LPS-stimulated RAW264.7 cells. The phosphorylation of p38, JNK, ERK, TBK1, IKKα/ß, IκB, p65, c-Jun, and IRF3 was reduced after XI treatment. Additionally, the expression levels of nuclear proteins of p65, c-Jun, and IRF3 were inhibited by XI treatment. Conclusions: Taken together, XI possesses potential anti-RA effect and the underlying mechanism may be closely associated with the inhibition of TLR4 signaling. Our findings provide further pharmacological justifications for the clinical use of XI in RA treatment.

8.
Radiat Res ; 200(5): 462-473, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37796808

RESUMEN

The effect of autophagy on the radiation-induced bystander effect (RIBE) in vivo is unclear. Here, the whole brains of microtubule-associated protein 1A/1B-light chain 3 (LC3) and C57BL/6 (B6) mice were irradiated once (10 Gy)(IR1), given 3 fractions in three weeks (IR3), or 6 fractions in six weeks (IR6). The median survival of LC3 mice was 56.5 days, and that of B6 mice was 65 days after IR6. LC3 mice showed more congestion and fibrosis in the lung after the IR3 and IR6 irradiation protocols than B6 mice. Quantitative proteomics of serum samples and lung RNA sequencing of the LC3 group showed that the common most clustered pathway of the IR3 group was the elastic fiber formation pathway, which contained Periostin (POSTN). POSTN in the motoneurons increased with increasing number of radiation fractions in LC3 mice. A 1 µg/g POSTN neutralizing antibody reduced the lung fibrosis of LC3 mice exposed to IR3 by one-third, and significantly prolonged the survival time of LC3 mice exposed to IR6. LDN-214117 and LRRK2-in-1 were the best two of sixteen transforming growth factor-beta1 (TGF-ß) receptor and autophagy mediators to decrease Postn mRNA. These data led us to conclude that LC3 accelerated motoneuron secretion of POSTN and aggravated the RIBE in the lung after brain irradiation.


Asunto(s)
Fibrosis Pulmonar , Traumatismos por Radiación , Ratones , Animales , Ratones Endogámicos C57BL , Pulmón/efectos de la radiación , Fibrosis Pulmonar/metabolismo , Traumatismos por Radiación/metabolismo , Encéfalo , Neuronas Motoras
9.
Int J Biol Macromol ; 251: 126311, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37579895

RESUMEN

The current study aimed to investigate the effects and mechanisms of Paris polyphylla polysaccharide component 1 (PPPm-1) to improve learning and memory in D-galactose-induced aging model mice. We determined the effects of PPPm-1 on the brain, organ index, and behavior in the aging model mice induced by D-galactose to study learning and memory improvement. UV-Vis spectrophotometry helped determine the PPPm-1 effect on antioxidant parameters associated with learning and memory in the brain and related organs of aging mice. Moreover, in the hippocampi of aging model mice, PPPm-1 effect on the mRNA and protein expressions of p19, p53, p21, P16, Rb, Wnt/1, ß-catenin, CyclinD1, TCF-4, and GSK-3ß were detected using the quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. The results indicated that PPPm-1 could increase the brain and organ indexes, the avoidance latency, the total distance and average speed in the water maze, and the SOD and GSH-PX activities in the brain, liver tissues, and plasma. Moreover, the mRNA and protein expressions of Wnt/1, ß-catenin, CyclinD1, and TCF-4 were also elevated in the hippocampi of aging model mice. However, the error times in step-through tests, the MDA content in the brain and liver tissues, the AChE activity in the brain tissue, the protein expressions of P16, Rb in the hippocampi, and the mRNA and protein expressions of p19, p53, p21, and GSK-3ß in the hippocampi of aging model mice were significantly decreased. Thus, PPPm-1 significantly enhanced the learning and memory impairment induced by D-galactose in mice. The action mechanisms were associated with anti-oxidative stress, cholinergic nervous system function regulation, LTP enhancement in long-term memory, down-regulated expression of p19/p53/p21 signaling pathway factors, and Wnt/ß-catenin signaling pathway activation.

10.
Adv Healthc Mater ; 12(28): e2301292, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37458333

RESUMEN

As a distinctly different way from apoptosis, ferroptosis can cause cell death through excessive accumulation of lipid peroxide (LPO) and show great potential for cancer therapy. However, efficient strategies for ferroptosis therapy are still facing great challenges, mainly due to insufficient endogenous H2 O2 or relatively high pH value for Fenton reaction-dependent ferroptosis, and the high redox level of tumor cells attenuates the oxidation therapy. Herein, an efficient lipid-based delivery system to load oxidation catalyst and glutathione peroxidase 4 (Gpx4) inhibitor is orchestrated, intending to amplify Fenton reaction-independent ferroptosis by bidirectional regulation of LPO accumulation. Ferric ammonium citrate (FAC), Gpx4 inhibitor sorafenib (SF), and unsaturated lipids are constructed into mPEG2K -DSPE-modified liposomes (Lip@SF&FAC). Influenced by the high level of intratumoral glutathione, FAC can be converted into Fe2+ , and subsequently the formed iron redox pair (Fe2+ /Fe3+ ) catalyzes unsaturated phospholipids of liposomes into LPO via a Fenton reaction-independent manner. Meanwhile, SF can downregulate LPO reduction by inhibiting Gpx4 activation. In vitro and in vivo antitumor experiments show that Lip@SF&FAC induces massive LPO accumulation in tumor cells and ultimately exhibits strong tumor-killing ability with negligible side effect. Consequently, this two-pronged approach provides a new ferroptosis strategy for predominant LPO accumulation and enhanced cancer therapy.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Liposomas/farmacología , Oxidación-Reducción , Apoptosis , Peróxidos Lipídicos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
11.
Aging (Albany NY) ; 15(14): 6905-6920, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37466428

RESUMEN

This study aimed to develop an exosome-coated polydatin (PD) nanoparticles (exo-PD) for improving the water solubility and bioavailability of polydatin and explore its salutary effects on intestinal radiation injury. Exosomes (exo) were extracted from the medium of human amniotic fluid stem cells (hAFSc). Mice were divided into control group, irradiation (IR) group, irradiation+PD (IR+PD) group, irradiation+exo (IR+exo) group and irradiation+exo-PD (IR+exo-PD) group. The results of characterization of protein markers, particle size, morphology and cellular uptake ability confirmed that exosomes were effectively isolated using ultracentrifugation. Compared with the IR group, exo-PD improved cell viability, prolonged survival of mice, improved leukocyte count and reduced diarrhea rate. Histological results showed that the exo-PD group had significant improvements in small intestinal villus length and crypt number and less crypt cell damage. exo-PD could reduce IL-1α and IL-6 levels, reduced γ-H2AX expression, increased mitochondrial membrane potential, enhanced oxidative phosphorylation, and delayed cellular senescence. exo-PD could alleviate intestinal injury by improving mitochondrial function through PI3K-AKT pathway. The exo-PD was able to reduce radiation damage to intestinal cells and could be a potential candidate for salvage of intestinal radiation damage.


Asunto(s)
Exosomas , Estilbenos , Humanos , Ratones , Animales , Exosomas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Glucósidos/farmacología , Glucósidos/uso terapéutico , Estilbenos/farmacología , Estilbenos/uso terapéutico
12.
Drug Des Devel Ther ; 17: 297-312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756190

RESUMEN

Purpose: Sichen (SC) formula is a classic prescription of Tibetan medicine. Due to its potential anti-inflammatory effect, the SC formula has been clinically used to treat respiratory diseases for many years in the Chinese Tibet region. The present study aimed to investigate the anti-inflammatory effect of SC and explore the underlying mechanisms. Methods: SC formula was characterized by HPLC analysis. The acute lung injury (ALI) mouse model was induced by direct intratracheal lipopolysaccharide (LPS) instillation, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected. Meanwhile, RAW264.7 macrophages were stimulated by LPS. The contents of inflammatory mediators in the culture medium were determined by ELISA. Protein levels were determined by immunohistochemical staining or Western blotting. Nuclear localization of NF-κB, AP-1, and IRF3 was performed using immunofluorescence and Western blotting. Results: In the LPS-induced ALI mouse model, SC treatment suppressed the secretion of inflammatory mediators (TNF-α, IL-6, IL-1ß, MCP-1, MIP-1α, and RANTES) in BALF. SC treatment hindered the recruitment of macrophages. SC treatment also inhibited the expression of CD68, p-p65, and TLR4 in the lung tissue. In the LPS-exposed RAW264.7 cells, the cell viability was not changed up to 400 µg/mL of SC. SC concentration-dependently suppressed the production of nitric oxide, prostaglandin E2, TNF-α, IL-6, MCP-1, MIP-1α, and RANTES in LPS-challenged RAW264.7 cells. The expression levels of iNOS, COX-2, p-p38, p-JNK, p-ERK, p-TBK1, p-IKKα/ß, p-IκB, p-p65, p-c-Jun, and p-IRF3 were decreased after SC treatment. Moreover, the nuclear translocation of p65, c-Jun, and IRF3 was also blocked by SC treatment. Conclusion: SC treatment inhibited the inflammatory responses in LPS-induced ALI mouse model/RAW264.7 macrophages. The underlying mechanism of this action may be closely associated with the suppression of TLR4 signaling pathways. These research findings provide further pharmacological justifications for the medicinal use of SC in the management of respiratory diseases.


Asunto(s)
Lesión Pulmonar Aguda , Receptor Toll-Like 4 , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Antiinflamatorios/uso terapéutico , Quimiocina CCL3/metabolismo , Interleucina-6 , Lipopolisacáridos , FN-kappa B/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Medicina Tradicional Tibetana
13.
Neurobiol Stress ; 22: 100513, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36636173

RESUMEN

Psychological stress emerges to be a common health burden in the current society for its highly related risk of mental and physical disease outcomes. However, how the quickly-adaptive stress response process connects to the long-observed organismal alterations still remains unclear. Here, we investigated the profile of circulatory extracellular vesicles (EVs) after acute stress (AS) of restraint mice by phenotypic and proteomic analyses. We surprisingly discovered that AS-EVs demonstrated significant changes in size distribution and plasma concentration compared to control group (CN) EVs. AS-EVs were further characterized by various differentially expressed proteins (DEPs) closely associated with biological, metabolic and immune regulations and were functionally important in potentially underlying multiple diseases. Notably, we first identified the lipid raft protein Stomatin as an essential biomarker expressed on the surface of AS-EVs. These findings collectively reveal that EVs are a significant function-related liquid biopsy indicator that mediate circulation alterations impinged by psychological stress, while also supporting the idea that psychological stress-associated EV-stomatin can be used as a biomarker for potentially predicting acute stress responses and monitoring psychological status. Our study will pave an avenue for implementing routine plasma EV-based theranostics in the clinic.

14.
Int J Oral Sci ; 15(1): 7, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646698

RESUMEN

Severe muscle injury is hard to heal and always results in a poor prognosis. Recent studies found that extracellular vesicle-based therapy has promising prospects for regeneration medicine, however, whether extracellular vesicles have therapeutic effects on severe muscle injury is still unknown. Herein, we extracted apoptotic extracellular vesicles derived from mesenchymal stem cells (MSCs-ApoEVs) to treat cardiotoxin induced tibialis anterior (TA) injury and found that MSCs-ApoEVs promoted muscles regeneration and increased the proportion of multinucleated cells. Besides that, we also found that apoptosis was synchronized during myoblasts fusion and MSCs-ApoEVs promoted the apoptosis ratio as well as the fusion index of myoblasts. Furthermore, we revealed that MSCs-ApoEVs increased the relative level of creatine during myoblasts fusion, which was released via activated Pannexin 1 channel. Moreover, we also found that activated Pannexin 1 channel was highly expressed on the membrane of myoblasts-derived ApoEVs (Myo-ApoEVs) instead of apoptotic myoblasts, and creatine was the pivotal metabolite involved in myoblasts fusion. Collectively, our findings firstly revealed that MSCs-ApoEVs can promote muscle regeneration and elucidated that the new function of ApoEVs as passing inter-cell messages through releasing metabolites from activated Pannexin 1 channel, which will provide new evidence for extracellular vesicles-based therapy as well as improving the understanding of new functions of extracellular vesicles.


Asunto(s)
Conexinas , Creatina , Vesículas Extracelulares , Mioblastos , Creatina/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Regeneración , Conexinas/metabolismo
15.
J Med Virol ; 95(1): e28147, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121159

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the novel coronavirus disease (COVID-19) pandemic, which has caused serious challenges for public health systems worldwide. Due to the close relationship between animals and humans, confirmed transmission from humans to numerous animal species has been reported. Understanding the cross-species transmission of SARS-CoV-2 and the infection and transmission dynamics of SARS-CoV-2 in different animals is crucial to control COVID-19 and protect animal health. In this review, the possible animal origins of SARS-CoV-2 and animal species naturally susceptible to SARS-CoV-2 infection are discussed. Furthermore, this review categorizes the SARS-CoV-2 susceptible animals by families, so as to better understand the relationship between SARS-CoV-2 and animals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Pandemias/prevención & control
16.
Front Bioeng Biotechnol ; 10: 1054370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36524049

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent stem cells with differentiation potential and paracrine properties, drawing significant attention in the field of regenerative medicine. Extracellular vesicles (EVs), mainly including exosomes, microvesicles and apoptotic bodies (ABs), are predominantly endosomal in origin and contain bioactive molecules, such as miRNAs, mRNAs, and proteins, which are transferred from their original cells to target cells. Recently it has emerged that MSC-derived EVs (MSC-EVs) combine the advantages of MSCs and EVs, which may be used as a promising MSC-based therapy in tissue repair and regeneration. Oral and craniomaxillofacial diseases are clinically complications containing the soft and hard tissues in craniofacial and dental arches. These diseases are often induced by various factors, such as chemical, microbiological, physical factors, and systemic disorders. For decades, tissue repair and regeneration in oral and craniomaxillofacial regions provide substantial improvements in the prevention and treatment of some severe diseases. In this review we discuss MSC-EVs and their therapeutic potential in oral and craniomaxillofacial tissue regenerative medicine.

17.
Biomed Pharmacother ; 153: 113358, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35785699

RESUMEN

The objectives of this study were to investigate the antithrombotic effect and physiological mechanism of okanin, a flavonoid monomer in Coreopsis tinctoria Nutt. The antithrombotic effects of okanin were determined by the anticoagulant activity test in vitro and in vivo, the venous thrombosis and arterial thrombosis test in rats. To study the antithrombotic physiological mechanisms of okanin, UV spectrophotometer and enzyme-linked immunosorbent assay (ELISA) were used to determine the effects of three concentrations of okanin on the contents of 6-keto-prostaglandin F1α (6-Keto-PGF1α), thromboxane B2 (TXB2), endothelin-1 (ET-1), antithrombin III (AT-Ⅲ), protein C (PC) and von willebrand factor (vWF) in the plasma of rats with arterial thrombosis; ELISA was used to detect the effects of okanin on the contents of plasminogen (PLG), tissue plasminogen activator (t-PA) and type-1 plasminogen activator inhibitor (PAI-1) in the plasma of mice and Chinese white rabbits. The results showed that okanin could prolong the coagulation time in vitro and in vivo of animals (P < 0.01 in the high dose group) and the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) of human venous blood (ATPP of medium dose group P < 0.01; PT, TT P < 0.05. P < 0.01 in the high dose group); inhibit the maximum platelet aggregation rate of rabbits (P < 0.05 in the low dose group; P < 0.01 in the medium and high dose groups), decrease the dry and wet weight of venous thrombosis and the wet weight of common carotid artery thrombosis in rats (low dose group, P < 0.05; medium and high dose groups, P < 0.01); increase the levels of 6-Keto-PGF1α, AT-Ⅲ, PLG and t-PA in animal plasma; decrease the levels of TXB2, ET-1, vWF and PAI-1 in animal plasma. It is concluded that okanin can significantly inhibit thrombosis, and its physiological mechanisms were related to affecting the activation of related coagulation factors in endogenous and exogenous coagulation pathways, affecting the physiological characteristics of platelets, repairing damaged vascular endothelial cells and enhancing the activity of the fibrinolytic system.


Asunto(s)
Trombosis , Activador de Tejido Plasminógeno , 6-Cetoprostaglandina F1 alfa , Animales , Anticoagulantes/farmacología , Chalconas , Células Endoteliales/metabolismo , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Humanos , Conejos , Ratas , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Activador de Tejido Plasminógeno/metabolismo , Factor de von Willebrand
18.
J Biomed Nanotechnol ; 18(4): 1138-1145, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35854438

RESUMEN

Fragrances are widely used in everyday life. However, too fast volatilization rates and poor adhesion on substrates limit their applications. In this study, reactive nano-fragrance based on cyanuric chloride (CYC)-modified chitosan (CSCYC) were prepared by a solvent evaporation method. First, CS-CYC was synthesized. Subsequently, CS and CS-CYC were utilized to prepare nano-fragrances. The results demonstrated that adding CS and CS-CYC could significantly improve the fragrance encapsulation efficiency and reduce the release rate of phenylethanol. phenylethanol Moreover, the adhesion of nano-capsules on commodities was improved with CS by forming hydrogen bonds. CYC on the surface of the nanocapsules further enhanced the conglutination of nano-fragrances on commodities by a condensation reaction with wallpaper. Additionally, the addition of both CS and CS-CYC imparted antibacterial activity for the nano-fragrances against Gram-positive and Gram-negative bacteria with excellent biosafety. Therefore, the reactive nano-fragrances with antimicrobial activity and slow-release properties could provide a comfortable and healthy living environment, making them have vast application potential.


Asunto(s)
Quitosano , Nanocápsulas , Perfumes , Alcohol Feniletílico , Antibacterianos/química , Antibacterianos/farmacología , Quitosano/química , Quitosano/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Nanocápsulas/química
19.
Chem Commun (Camb) ; 58(49): 6942-6945, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35640157

RESUMEN

Introducing 2,3-dimethyl-1H-imidazol-3-ium iodide (Dmim) as a monodentate ligand during the preparation of ZIF-8 yields ZIF-8 + (50) and ZIF-8 + (38) with cationic 'missing linker' defects. ZIF-8 + (38) adsorbs 125I2 and the resulting radioactive host-guest complex exhibits in vitro cytotoxicity comparable to that of Na125I against colon cancer cell line CT26.


Asunto(s)
Neoplasias del Colon , Zeolitas , Cationes , Neoplasias del Colon/radioterapia , Humanos , Radioisótopos de Yodo , Zeolitas/farmacología
20.
Metabolism ; 131: 155200, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35405150

RESUMEN

BACKGROUND: Schisandrin B (Sch B), which inhibits hepatic steatosis caused by non-alcoholic fatty liver disease (NAFLD), is one of the most active dibenzocyclooctadienes isolated from Schisandra chinensis (Turcz.) Baill with various pharmacological activities. In this study, the role of Sch B-induced autophagy in lipid-lowering activities of Sch B was examined and the underlying mechanisms were elucidated. METHODS: Free fatty acid (FFA)-stimulated HepG2 cells and mouse primary hepatocytes (MPHs) and high-fat diet (HFD)-fed mice were used as NAFLD models. The role of Sch B-induced autophagy in lipid-lowering effects of Sch B was assessed using ATG5/TFEB-deficient cells and 3-methyladenine (3-MA)-treated hepatocytes and mice. RESULTS: Sch B simultaneously active autophagy through AMPK/mTOR pathway and decreased the number of lipid droplets in FFA-treated HepG2 cells and MPHs. Additionally, siATG5/siTFEB transfection or 3-MA treatment mitigated Sch B-induced autophagy and activation of fatty acid oxidation (FAO) and ketogenesis in FFA-treated HepG2 cells and MPHs. Sch B markedly decreased hepatic lipid content and activated the autophagy through AMPK/mTOR pathway in HFD-fed mice. However, the activities of Sch B were suppressed upon 3-MA treatment. Sch B upregulated the expression of key enzymes involved in FAO and ketogenesis, which was mitigated upon 3-MA treatment. Moreover, changes in hepatic lipid components and amino acids may be related to the Sch B-induced autophagy pathway. CONCLUSION: These results suggested that Sch B inhibited hepatic steatosis and promoted FAO by activation of autophagy through AMPK/mTOR pathway. Our study provides novel insights into the hepatic lipophagic activity of Sch B and its potential application in the management of NAFLD.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia , Ciclooctanos , Dieta Alta en Grasa , Ácidos Grasos no Esterificados/metabolismo , Hepatocitos/metabolismo , Cuerpos Cetónicos/metabolismo , Lignanos , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Compuestos Policíclicos , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...